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Abstract. Ab initio molecular dynamical simulations have been performed to investigate the
phenomenon of melting in a finite-size system, namely an Al13 cluster. Classical molecular
dynamical simulations using Lennard-Jones potentials have shown that a coexistence region,
where both solid-like and liquid-like behaviour is observed, exists over a range of total energy.
Our density functional simulations on a metallic cluster aim at probing this coexistence region.
Although our statistics is somewhat limited, we do find definite signatures of a coexistence
region.

1. Introduction

During the last decade, there has been a great deal of interest in studying small aggregates
of particles, since their properties are significantly different from those of the corresponding
bulk materials. The impetus for studying cluster physics has come from the availability of
a variety of experimental techniques for synthesizing and analysing such aggregates, which
can be formed by using noble-gas, semiconducting, metallic and transition metal atoms [1].

One of the properties of particular interest is the thermal behaviour of clusters. Recently
Berry and co-workers carried out extensive studies on the dynamics of Lennard-Jones
clusters and presented evidence for solid-like–liquid-like transitions [2]. An interesting
observation has been that of the presence of a coexistence region during such transitions.
Their simulations showed that Ar13 clusters exhibit a temperature below which the solid
form is stable, and a higher temperature above which the liquid form is stable. For any
temperature in between these two, the two forms coexist. Although this transition from
solid-like phase to liquid-like phase is not a ‘phase transition’ in a strict sense, it is loosely
referred to as ‘melting’. Such melting transitions have also been investigated for molecular,
ionic and metallic clusters, in some cases experimentally [3]. Interestingly, the power
spectra of potential energy fluctuations in the liquid state show 1/f behaviour over a wide
range of frequencyf [4].

Almost all of the molecular dynamical (MD) simulations carried out to probe the
dynamics associated with melting reported so far have used the classical Lennard-
Jones description for the atomic interactions. Although extensive density functional MD
investigations have been carried out on the ground-state zero-temperature properties of small
clusters, relatively few investigations have attempted to probe their thermal behaviour. Thus
it is attractive to perform first-principles density functional MD simulations to determine
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whether the solid–liquid coexistence energy range is a feature of LJ systems or whether it
is generic to a certain class of finite-size systems. With the advent of the powerful Car–
Parrinello technique [5], it has become feasible to perform such simulations, albeit for a
short simulation timescale as compared to what can be studied in classical MD. However,
a full orbital-based simulation can turn out to be prohibitively expensive. Recently, we
[11] have developed and applied an orbital-free density-based MD (DBMD) technique for
investigating ground states for a variety of clusters. This method approximates the kinetic
energy functional in terms of charge density only, and speeds up the total energy calculations
considerably. It may then be argued that the partial covalent character of the aluminium
atom may not be within reach of the method used. We have demonstrated that the method
is found to reproduce the ground-state geometries and their symmetries for simple metal-
atom systems, for example Aln, for 1 < n 6 13, and AlnLim, where typicallym < n

andnmax = 13 [11], when compared to the full Kohn–Sham-based geometries, with bond
lengths within 6–8%. Hence, the DBMD technique is capable of capturing the essential
physics at finite temperatures and is known to sustain long stable dynamical runs [6]. Thus
it is ideally suitable for the present investigation.

In this paper, we describe the results of our simulations using DBMD for an Al13 cluster.
It may be noted that the ground-state geometry of Al13 is the same as that of Ar13, namely
an icosahedron, which is reproduced accurately by the DBMD method. Furthermore, the
Al 13 cluster is a metal-atom cluster and is more strongly bonded than noble-gas systems.
It may be noted that noble-gas systems are typically studied via classical simulations. Our
methodology for studying the melting transitions is analogous to the one used by Jellinek
and co-workers. Thus each simulation is carried out at a constant energy and the procedure
is repeated for several values of the energy.

In the next section, section 2, we give a brief introduction to DBMD along with the
simulation procedure. The results are presented in section 3 while section 4 presents the
conclusions.

2. Density-based molecular dynamics

The total energy of a system consisting ofNa atoms andNe interacting electrons, under the
influence of an external field due to the nuclear charges at coordinatesRn, can be written
as a functional of the total electronic charge densityρ(r) as

E[ρ(r), {Rn}] = T [ρ(r)] + Eext [ρ(r)] + Exc[ρ(r)+ Ec[ρ(r)] + Eii [ρ(r), {Rn}] (1)

whereExc is the exchange–correlation energy,Ec is the electron–electron Coulomb inter-
action energy,Eext is the electron–ion interaction energy andEii is the ion–ion interaction
energy. The first term representing the kinetic energy functionalT [ρ] is approximated as

T [ρ(r)] = F(Ne)T0[ρ(r)] + Tw[ρ(r)] (2)

whereTTF is the Thomas–Fermi term,TW is the gradient correction given by Weizsacker
and the factorF(Ne) is given by

F(Ne) =
(

1− 2

Ne

)(
1− A1

N
1/3
e

+ A2

N
2/3
e

)
(3)

with optimized parameter valuesA1 = 1.314 andA2 = 0.0021 [10]. This kinetic energy
functional is known to describe well the response properties of the electron gas and has
yielded very good polarizabilities for various atomic systems. It also provides an excellent
representation of the kinetic energy of atoms. The total electronic energy for a fixed
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geometry of atoms is minimized using the conjugate gradient technique [7] and the geometry
minimization has been performed using the Car–Parrinello simulated-annealing strategy. All
of the DBMD calculations were performed using only the local part of the Bachelet, Hamann
and Schl̈uter pseudopotentials [8] and the exchange–correlation potential of Ceperley and
Alder as interpolated by Perdew and Zunger [9].

We have used a periodically repeated unit cell of length 40 au with a FFT mesh size of
64×64×64. Fourier space evaluations are performed by expanding the square-root charge
density as

ρ̃(r) =
∑
G

ρ̃(G)eiG·r. (4)

The simulation procedure that we have used is essentially similar to the one given by
Jellinek et al. The ground-state configuration of Al13 at T = 0 K is uniformly radially
expanded by a few per cent of the radius in the ground state in order to increase the
total energy. After one has obtained the ground-state charge density by conjugate gradient
minimization, the system is ‘released’ to perform an unconstrained dynamics, i.e.constant-
total-energydynamics. The recorded trajectories are then analysed. All of the averages are
performed in the standard fashion after discarding the requisite number of initial time instants
which is of the order of a few thousands. The range of total energies from−2.2089 au to
−2.1583 au, corresponding to expansions from 5% to 32%, is investigated, with a total of
21 constant-energy runs.

We use the entire Fourier mesh, yielding an energy cut-off of about 76 Ryd. A time
step of 20 au is used to evolve the system for about 30 000 time steps. This amounts to a
total simulation time of ten picoseconds. Further details of the simulation technique may
be found in reference [11] and the references therein. All of the quantities are expressed in
atomic units.
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Figure 1. The total electronic energy (broken curve) and the grand total energy (continuous
curve) as functions of the iteration number.
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3. Results and discussion

In order to demonstrate the quality of the DBMD simulations, we show in figure 1 a plot of
the grand total energy (solid curve) and the total electronic energy (dotted curve) as functions
of time for the fixed energy value−2.2089 au, which corresponds to 5% expansion. The
grand total energy, which is the sum of the total electronic energy, the ionic kinetic energy
and the fictitious electronic kinetic energy, is a conserved quantity. The cluster is known
to be in a solid-like region for this energy. For clarity, only a part of the simulation run
is shown. The figure indicates that the grand total energy is constant to within 1 part in
104 au of energy and that the electrons follow the Born–Oppenheimer surface quite closely.
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Figure 2. The caloric curve: the mean total energy per particle versus the mean kinetic energy
per particle. The two energiesEf andEm are marked.

Jellineket al have presented evidence for the coexistence region by examining, among
other results, the caloric curve, which represents the relationship between the mean kinetic
energy per particle and the mean total energy per particle. We present our caloric curve
in figure 2 for a wide range of energies corresponding to expansions from 5% to 32%.
The short-term averaging has been carried out over 250 consecutive time steps, which
averages out the vibrational motion. Evidently, the curve can be divided into three distinct
regions: (a) the initial region, represented by a nearly straight line, which corresponds to
low temperatures up toEf ; (b) the region aboveEm, which exhibits a liquid-like behaviour;
and (c) an intermediate region. The temperaturesTf andTm corresponding to the energies
Ef andEm may be expressed as

Ti = 2N

3N − 6

Ekin

k
(5)

whereEkin is the average kinetic energy per particle. The values calculated according to
equation (5) areTf ' 2700 K andTm ' 4600 K [12].

The dotted lines in figure 2 are the extrapolations from the initial and final regions taken
as approximate straight lines and would correspond to the bimodal distribution discussed by
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Jellineket al. In what follows, we will analyse these three energy regions and characterize
them.

One of the parameters used to monitor the phase changes in the system isδ, the RMS
bond-length fluctuation, which is defined as

δ = 2

N(N − 1)

∑
i<j

(〈r2
ij 〉t − 〈rij 〉2t )1/2
〈rij 〉t (6)

whereN is the number of particles in the system,rij is the distance between theith and
j th particles, and the time averages are calculated over the entire trajectory.
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Figure 3. The RMS bond-length fluctuation,δ, versus the total energy.

In figure 3, we showδ as a function of the total energy of the system. It can be seen
that the behaviour ofδ reflects the three distinct regions seen in the caloric curve. In the
region where the total energyE < Ef , δ has a small positive slope representing the thermal
expansion of the solid-like region with values below 0.1.δ changes sharply from 0.1 to
0.3 in the second region whereEf < E < Em. In the third region whereE > Em, it
saturates at around a value of 0.3; this is the liquid-like diffusive region. Let us recall that
the Lindemann criterion considers the region withδ less than 0.1 as being solid-like. Our
results indicate that, in case of finite systems, crossing the Lindemann criterion line does
represent the onset of the deviation from solid-like behaviour, and that the second region,
where 0.1< δ < 0.3, represents a coexistence phase.

In figure 4, we show the mean square displacements defined as

〈r2(t)〉 = 1

Nnt

nt∑
j=1

N∑
i=1

[
ri (t0j + t)− ri (t0j )

]2
(7)

for the three energies−2.2089 au (the solid-like region; curve a),−2.1905 au (the co-
existence phase; curve b) and−2.1583 (the liquid-like region; curve c). These three energies
are chosen as representative energies in the solid-like region, coexistence region and liquid-
like region, respectively. Curve a, on this scale, is almost flat and is very close to the
axis. In order to investigate the region aroundEf in figure 4, we show the mean square
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Figure 4. Mean square displacements versus the iteration number for the three regions: curve a:
the solid-like region; curve b: the coexistence region; and curve c: the liquid-like region. On
the scale used, curve a is almost along thex-axis.
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Figure 5. Mean square displacements versus the iteration number for expansions from 5% to
21%.

displacements for expansions from 5% to 21% in figure 5. Quite clearly, there is a change
in the nature of the curve between expansions 16% and 18%. All of the curves below
and including that for 16% expansion saturate very quickly around a maximum value of 1,
which is characteristic of a solid-like behaviour. The curves for expansions above 16%, in
the coexistence region, show a small gradual increase indicating at least a partially diffusive
motion. As the temperature increases the slope also increases. In the molten region (curve c



Study of melting in a finite-sized cluster: Al13 3315

of figure 4), the maximum root mean square displacement is about 7 au. This displacement
is of the order of the cluster diameter and the diffusive motion is clearly evident.

We have also calculated the power spectrum, which provides information about the
oscillation modes of the system. It is defined as

C(ω) = 2
∫ ∞

0
C(t) cos(ωt) dt (8)

whereC(t) is the velocity autocorrelation function defined as

C(t) = 〈(v(t0+ t)− 〈v〉t ) · (v(t0)− 〈v〉t )〉〈(v(t0)− 〈v〉t )2〉 (9)

where〈v〉t is the average over the trajectory after discarding the requisite number of initial
time instants.
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Figure 6. The power spectrum for the solid-like region. The energy corresponds to the energy
of curve a in figure 4.

The power spectra for the three energy regions mentioned previously are presented in
figures 6–8. Our curves show similar features to those seen by Jellineket al [2]. Figure 6
shows a single-peaked spectrum corresponding to a breathing mode characteristic of solid-
like behaviour. Theω = 0 component is absent. Figure 7 shows a broad peak indicative
of the softening of the modes, but still lacking a net diffusive motion. In contrast, a clear
liquid-like behaviour is seen in figure 8 since there is no well defined sharp peak, indicating
an absence of well defined vibrational modes. Furthermore, a non-zeroω = 0 component
is present.

An examination of an animation of the evolution of the cluster at different moments in
time in the coexistence region reveals a fluctuating structure. The structure is not icosahedral,
has high atomic mobilities and exhibits no ballistic motion.

Further insight can be gained by tagging a particle and studying the motion of its nearest
neighbours during the evolution. It is expected that, in the solid phase, all of the particles
will execute oscillatory (not necessarily harmonic) motion around the mean position and
also all of the particles will remain in the same nearest-neighbour environment. For this
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Figure 7. The power spectrum for the coexistence region. The energy corresponds to the energy
of curve b in figure 4.
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Figure 8. The power spectrum for the liquid-like region. The energy corresponds to the energy
of curve c in figure 4.

purpose, we have focused on one particular particle on the surface. Its distance from three
other particles, belonging to the first-, the second- and the third-nearest-neighbour shells,
has been plotted as a function of time. This is shown in figures 9–11 for the three regions
under consideration. The first shell is represented by the solid line labelled a, the second
shell is represented by the dashed line labelled b and the third shell is represented by the
dotted line labelled c. Clearly, in the solid-like region in figure 9, the particles are never
exchanged between the shells. In figure 10, which shows the coexistence region, it can be
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Figure 9. The nearest-neighbour distances from the tagged atom of the three particles as
functions of the iteration number for the solid-like region. Every 100th iteration is plotted
and further averaged over one cycle. Curve a (continuous curve): the atom in the first-nearest-
neighbour shell; curve b (dashed curve): the atom in the second-nearest-neighbour shell; curve c
(dotted curve): the atom in the third-nearest-neighbour shell.

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200 1400 1600 1800

r(
t)

Time

a
b

c

b

Figure 10. The nearest-neighbour distances from the tagged atom of the three particles as
functions of the iteration number for the coexistence region. Every 100th iteration is plotted
and further averaged over one cycle. Curve a (continuous curve): the atom in the first-nearest-
neighbour shell; curve b (dashed curve): the atom in the second-nearest-neighbour shell; curve c
(dotted curve): the atom in the third-nearest-neighbour shell.

seen that the particles from the first and second shells are exchanged but the shell structure
is approximately preserved. For example, around the 700th time step the trajectories of
the first- and the second-nearest neighbours have crossed and the first-nearest neighbour has
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Figure 11. The nearest-neighbour distances from the tagged atom of the three particles as
functions of the iteration number for the liquid-like region. Every 100th iteration is plotted
and further averaged over one cycle. Curve a (continuous curve): the atom in the first-nearest-
neighbour shell; curve b (dashed curve): the atom in the second-nearest-neighbour shell; curve c
(dotted curve): the atom in the third-nearest-neighbour shell.
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Figure 12. The electronic charge density in thex = 0 plane for 5% expansion. The scales
along they- andz-axes are in units of 0.8 au. The atomic sites are marked as filled circles.

become the second-nearest neighbour. Occasionally the third-nearest neighbour has diffused
towards the first shell, as seen near the 900th time step. Completely diffusive motion of the
particles is evident in figure 11, where a complete mixing of the trajectories is clearly seen.

Finally we compare the electronic charge density when the cluster is in a solid-like
form with that when the cluster is in a liquid-like form. The 40 au unit cell is divided
up using a 64× 64× 64 mesh and the central region of about 40 mesh points is shown,
to bring out the essential features of the charge density. The charge density outside this
region is zero. A snapshot of the charge-density contours in the conveniently chosenx = 0
plane is shown in figure 12 for the solid at 5% expansion and having a cluster radius of
4.8 au. Also shown in the figure are the actual positions of the atoms, as filled circles,
in the x = 0 plane. A small dip at the centre of the cluster and near the atomic sites,
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Figure 13. The electronic charge density in thex = 0 plane for 32% expansion. The scales
along they- andz-axes are in units of 0.8 au. The approximate atomic sites are marked as filled
circles.

and a nearly symmetric charge density, are two features seen in the figure. The atomic
positions suggest a near-rectangular contour profile since there are only five atoms on the
yz-plane. Instead, a sixfold symmetric contour is seen because of the contribution due to
four atoms above and below thex = 0 plane. In contrast, for the liquid-like cluster, the
density does not show any particular symmetry, as the atoms have moved away considerably
from their equilibrium positions. This can be seen in the instantaneous plot of the charge
density shown in figure 13. Furthermore, the charge density in the liquid-like state is highly
inhomogeneous although it is confined within a certain radius which is larger than that for
the solid phase. It may be noted that in the case of the liquid-like charge-density plot,
the atomic positions shown are of the three particles nearest to thex = 0 plane. The
intermediate-density plots (not shown) resemble the liquid-like charge-density plots more
than the solid-like charge-density plots.

4. Conclusions

It is evident from the discussion above that the system exhibits a coexistence region. The
analysis of the caloric curve suggests two characteristic energies,Ef andEm, such that
belowEf the system is solid-like, while aboveEm the system is liquid-like. Between these
two energy regions the system is in a solid–liquid coexistence phase. This is corroborated
by the RMS bond-length fluctuation curves and the power spectra. Analysis of the nearest-
neighbour environment of a particular particle suggests a partial ‘softening’ of the rigid
solid in the coexistence region, which gradually increases with total energy. Although the
total simulation time is much less than the corresponding classical simulation times, we
obtain clear signatures of the coexistence region.
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